Národní úložiště šedé literatury Nalezeno 3 záznamů.  Hledání trvalo 0.00 vteřin. 
Behaviour of Objects in Structured Light Fields and Low Pressures
Flajšmanová, Jana ; Čižmár, Tomáš (oponent) ; Marago, Onofrio (oponent) ; Zemánek, Pavel (vedoucí práce)
A deeper understanding of behaviour of optically trapped particles reveals underlying physical phenomena arising from the light-matter interaction. We present an explanation of the enhancement of the pulling force acting on optically bound particles in the structured optical field, so--called tractor beam. It is demonstrated that the motion of two optically bound objects in a tractor beam strongly depends on their mutual distance and spatial orientation, which adds an extra flexibility to our ability to control matter with light.\newline Subsequently, the thesis is focused on the optical levitation of a particle in a vacuum. We propose a novel methodology for a characterization of properties of a weakly nonlinear Duffing oscillator represented by an optically levitated nanoparticle. The method is based on averaging recorded trajectories with defined initial positions in the phase space of nanoparticle position and momentum and provides us with the oscillator parameters directly from the recorded motion. Our innovative approach is compared with the commonly used power--spectral--density fitting, and exploiting numerical simulations, we show its applicability even at lower pressures where the nonlinearity starts to play a~significant role.
Behaviour of Objects in Structured Light Fields and Low Pressures
Flajšmanová, Jana ; Čižmár, Tomáš (oponent) ; Marago, Onofrio (oponent) ; Zemánek, Pavel (vedoucí práce)
A deeper understanding of behaviour of optically trapped particles reveals underlying physical phenomena arising from the light-matter interaction. We present an explanation of the enhancement of the pulling force acting on optically bound particles in the structured optical field, so--called tractor beam. It is demonstrated that the motion of two optically bound objects in a tractor beam strongly depends on their mutual distance and spatial orientation, which adds an extra flexibility to our ability to control matter with light.\newline Subsequently, the thesis is focused on the optical levitation of a particle in a vacuum. We propose a novel methodology for a characterization of properties of a weakly nonlinear Duffing oscillator represented by an optically levitated nanoparticle. The method is based on averaging recorded trajectories with defined initial positions in the phase space of nanoparticle position and momentum and provides us with the oscillator parameters directly from the recorded motion. Our innovative approach is compared with the commonly used power--spectral--density fitting, and exploiting numerical simulations, we show its applicability even at lower pressures where the nonlinearity starts to play a~significant role.
Optical binding of polystyrene particles in tractor beam
Damková, Jana ; Chvátal, Lukáš ; Oulehla, Jindřich ; Ježek, Jan ; Brzobohatý, Oto ; Zemánek, Pavel
The motion of a particle illuminated by a laser beam is usually driven by the photon flow due\nto the radiation pressure and therefore for particle trapping, one has to employ gradient forces. But in a tractor beam, objects are illuminated by the uniform light intensity and even so they can be pulled against the beam propagation. There have been developed several techniques how to create such a tractor beam. In our case, the tractor beam is created by two identical Gaussian beams that interfere under the defined angle. It creates the\nstanding wave, where in the transversal plane the particle is trapped by means of the gradient\nforce, but in the total beam propagation direction, the particle manipulation is driven by the non-conservative force. It is remarkable that this force can for the specific combinations of\nparameters pull the micro-particle against the beam propagation. This kind of behavior is\nbecause of the particle scattering where the majority of the incident photons is scattered in the forward direction and, based on the principle of action and reaction, the transfer of\nmomentum leads to a backward movement of the object. The pushing and pulling force is\nsensitive to the polarization of the laser beam, its incident angle and the particle size so this\ntechnique can be used for example for sorting of objects of different sizes.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.